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The Fundamental Noise Limit of Linear Amplifiers*

H. HEFFNERY, FELLOW, IRE

Summary—If the uncertainty principle of quantum mechanics
is applied to the process of signal measurement, two theorems relat-
ing to amplifier noise performance can be deduced. First, it can be
shown that it is impossible to construct a linear noiseless amplifier.
Second, if the amplifier is characterized as having additive white
Gaussian noise, it can be shown that the minimum possible noise
temperature of any linear amplifier is

; [1 2-1/G7 " v
=L S6d '

In the limit of high gain G this expression reduces to that previously
derived for the ideal maser and parametric amplifier. It is shown that
the minimum noise amplifier does not degrade the signal but rather
allows the use of an inaccurate detector to make measurements
on an incoming signal to the greatest accuracy consistent with the
uncertainty principle.

INTRODUCTION

INCE THE advent of the maser, there have been
S a number of treatments of the noise figure or noise

temperature of this and other potentially low
noise devices such as the parametric amplifier.!=* Most
of these have treated each specific device as a quantum
system and have determined a limiting noise tempera-
ture arising because of amplified spontaneous emission.
Although the details of the calculations differ, investiga-
tions of the minimum noise temperature due to this
effect yield values of the order of hv/k for both the
maser and the parametric amplifier.

The maser and the parametric amplifiers are phase
preserving amplifiers, or, in the terminology employed
here, linear amplifiers. They have been characterized
broadly as voltage amplifiers. There is another type of
amplifier which does not preserve the signal phase
which can be classed as a quantum counter. Weber??®
has proposed two forms of such amplifiers and has
pointed out that they have no spontaneous emission
noise. Thus these phase-insensitive counters have a
zero-limiting noise temperature. This result opens the
question of whether there are possible forms of linear
amplifiers—linear in the sense of phase preserving—
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which also have a limiting noise temperature approach-
ing zero.

In order to settle this question one needs to look for a
general physical principle which will apply to all ampli-
fiers regardless of the details of the specific amplifica-
tion process. An appropriate one is the uncertainty
principle of quantum mechanics which forms one of the
basic postulates of quantum theory. Although it has re-
sulted in important limitations on the accuracy of
measurements possible in atomic systems, its corre-
sponding limitations on the accuracy of signal measure-
ments have until recently gone unnoticed. At the 1959
Quantum Electronics Conference, Serber and Townes®
investigated the role of the uncertainty principle in
maser noise and Friedburg? considered its implication
on the noise figure of a general amplifier. Each of these
papers is open to some criticism. First, the uncertainty
principle as generally interpreted is a statement about
the results obtained in a physical measurement. As such
it can be applied to a signal detector but not to an ampli-
fier. An amplifier is not a measuring instrument which
produces a set of data. Amplification is rather a process,
a transformation of the signal. The uncertainty principle
can be applied to the measurement of the results of that
processing but not directly to the processing itself. A
second objection to both papers concerns their lack of
rigor in problems of statistical averaging, particularly in
regard to the phase of a signal. Finally, in the case of
Friedburg, the wrong constant was used in the statement
of the uncertainty principle. As implied before, Fried-
burg’s conclusions strictly speaking apply only to a de-
tector, not to an amplifier, and as such do not indicate
what class of amplifier falls under the uncertainty
limitation, nor how this limitation is affected by the
gain,

This purpose of this paper is to develop in a simple
but rigorous fashion the limitations on the noise per-
formance of linear amplifiers which are implied by the
uncertainty principle. First it will be shown that there
is no such thing as a noiseless linear amplifier. Next, by
characterizing the amplifier as adding white noise, the
minimum possible noise temperature is derived. The
resulting expression when the gain is large is exactly
that derived for the limiting noise performance of the
maser and the parametric amplifier.

6 R. Serber and C. H. Townes, “Amplification and Complemen-
tarity,” in “Quantum Electronics,” C. H. Townes, Ed.; Columbia
University Press, New York, N. Y., pp. 233-255; 1960.

7 H. Friedburg, “General amplifier noise limit,” in “Quantum
Electronics,” C. H. Townes, Ed.; Columbia University Press, New
York, N. Y., pp. 228-232; 1960.
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THE UNCERTAINTY PRINCIPLE

The uncertainty principle, first formulated by Heisen-
berg in 1927, claims that complete accuracy is impossi-
ble to obtain in the simultaneous measurements of cer-
tain physical quantities. In its most familiar form, it
asserts the fundamental inaccuracy which must result
in the simultaneous measurement of a particle’s mo-
mentum p and position x. If we define the uncertainty
in measurement to be the rms deviation from the mean
in the distribution obtained from an ensemble of meas-
urements, then the uncertainty in the measurement of
momentum Ap and the uncertainty in the measurement
of position Ax are related by

ApAx > h/4r. (1)

This relation can be interpreted in the following way.
The process of measuring cannot be divorced from the
physical process being measured. Not only does the act
of observing affect the system being observed, but it
does this in a way which cannot be precisely predicted.
It is this quality of unpredictability which formed the
new content of the uncertainty principle.

In its most general form, the uncertainty principle
applies to measurements of any two canonically con-
jugate quantities® such as, for example, the energy of
a system and the precise time at which the system
possesses this energy,

AEAt > h/4r. 2)

Still another form of the principle applies to the meas-
urement of the number of quanta in an oscillation and
its phase

AnAg > L. 3

This latter statement of the principle may be made
plausible by substituting the relations E=nhr and
¢ =2t into the preceding equation. We shall use this
last formulation of the uncertainty principle to derive
two basic theorems on amplifier noise performance.

THE UNAVOIDABLE NOISINESS OF LINEAR AMPLIFIERS

The first conclusion which emerges from the uncer-
tainty principle is: It is impossible to construct a noiseless
linear amplifier. We can prove this statement by postu-
lating the existence of a noiseless linear amplifier and
then showing that it violates the uncertainty principle.

¢ In mathematical form, the uncertainty principle states that if
the operators 4 and B which represent physical observables a and &
satisfy the commutation relation

AB — BA = iC,

then the uncertainties in the measurement of @ and b satisfy the rela-
tion

AaAb = 3(C),

where the term uncertainty stands for the root mean square devia-
tion from expectation value, e.g.,

Aa = [(42) — (4)2]12.
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Suppose we have a perfect linear amplifier by which
we mean the following. If during any given interval we
measure the number of photons #, produced at the out-
put, we find that it is related to the number of input
photons 7; by a constant G, the gain of the amplifier.

N = Gnl. (4)

Secondly, if we measure the phase ¢, of the output, we
find that it is equivalent to the input phase ¢ with
perhaps the inclusion of an additive phase shift 8.°

¢ = ¢1 1+ 0. ©)

Such an amplifier is linear in the sense that the phase
is preserved and the output quanta are linearly related
to the input quanta. [t is perfect in that no noise is
added. Note that frequency converters which derive
their gain solely by the frequency conversion factor do
not fall under this definition of a linear amplifier in that
the photon gain G is unity.

Let us now attach to the perfect linear amplifier an
ideal detector, ideal in the sense that it is capable of de-
tecting the number 7, of output photons and the output
phase ¢. within an uncertainty,

AnsAs = 3, (6)

the minimum value allowed by the uncertainty princi-
ple. (See Fig. 1.) Thus we imagine that we make a
measurement of the output photons and phase which
together with the uncertainties introduced by the de-
tector we write symbolically as (ns+Ans) and (¢ +Ads).

roo———— oo 5
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NEW MEASURING INSTRUMENT
INFERS INPUT An, A¢,=(1/G)%

IMPOSSIBLE

Fig. 1—Thought experiment to show the nonexistence
of a perfect amplifier.

9 These are operationally valid constructs since we can prepare
two signal sources, one of which has an accurately known photon
output and the other of which has an accurately known phase. If
each of these is applied in succession to the amplifier input and if in
succession two detectors are applied to the amplifier output, one of
which measures number of photons without giving phase information
and another which measures phase without giving photon number
information, we can determine the constants of the amplifier to arbi-
trary precision. Such a determination can, in fact, be made with a
single signal source and a single detector if a sufficiently large signal
level is used since the accuracy in the determination of phase and the
relative accuracy in the simultaneous determination of photon num-
ber are each proportional to 1/n!/2.
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We now change our point of view and look upon the
combination of perfect amplifier and ideal detector as a
single measuring instrument. The measurement of
(ny+Ans) and (¢ +A¢s) when referred to the input of
the amplifier implies an input number of photons
(m+Any) =1/G(ny +An,s) and an input phase (¢, A1)
= (¢2 £ A¢y) —6. Thus the uncertainty in the measure-
ment of input photons and phase is such that

Aniden = —=om ™
n1 = =
G 2
This conclusion is clearly impossible since it violates
the uncertainty principle. Therefore our postulated per-
fect linear amplifier cannot exist. It must add some un-
certainty, that is, noise.

MINIMUM NOISE TEMPERATURE OF A
LINEAR AMPLIFIER

We can pursue this argument even further to prove
the following result. The minimum noise temperature of a
linear amplifier characterized by additive white Gaussian
notse is

2—-1/G7
T, - [m = ®)
1-1/G k
and the minimum mean square phase fluctuation is
AGE (G — 1)wB )
b = P

Here & is Planck’s constant, v is the frequency, & is
Boltzmann’s constant, B is the bandwidth and P is the
signal power.

The proof of this assertion employs the same con-
ceptual scheme used previously, a linear amplifier (no
longer considered noiseless) followed by an ideal de-
tector. Again a measurement is made by the detector of
the output phase ¢. and photon number #,. This meas-
urement will include as before the same uncertainties
introduced by the detection process but will also include
the uncertainties which we have seen must be added
by the amplifier. Let us label the uncertainties intro-
duced by the detector An, and A¢g and those added by
the amplifier Az, and A¢,. If we assume the processes
which give rise to these two sets of uncertainties are
uncorrelated, then the total uncertainties as actually
measured, Az, and Ags, can be obtained from

Anq? = Ang? + Ang?
Age? = Ada® + Agdt.

i

(10)

These equations merely assert that the variances of
two uncorrelated random processes add.

Let us again shift our point of view and look upon the
combination of amplifier and detector as a single meas-
uring instrument. The measured uncertainties An,,
A¢, now imply an uncertainty in the measurement of
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the input phase and photon number given by
9 1 3 g
Any® = —G—Z (An? + Ang?)
Ag:* = A¢.” + Ag” (11)

Our proof proceeds by first demanding that the in-
ferred input uncertainties be the least allowed by the
uncertainty principle, .e., AmA¢p,=2%. This condition
insures that the amplifier uncertainty is the smallest
possible. We then characterize this amplifier uncer-
tainty by white Gaussian noise and determine the noise
temperature corresponding to this minimum uncer-
tainty.

First, however, we must make sure that the detector
is matched to the amplifier, for although the product
of the uncertainties An,A¢q is set, their ratio is not. We
can assure the best detection performance by minimiz-
ing the product AmA¢,; given by (11) with respect to the
ratio (An./A¢,) while still demanding that

AngA¢y = % (12)
This process results in the relation

And Ana

= (13)

A¢d Ad’a

which simply states that the minimum over-all uncer-
tainty comes about when the detector measures number
and phase with the same relative uncertainties as those
introduced by the amplifier.

We must make sure that the detector is matched to
the amplifier in another sense. Let us assume that the
amplifier has a bandwidth B. This characteristic implies
that the detector should sample the output at intervals
of =13B. If the interval is made longer, the full informa-
tion transmission capabilities of the amplifier are not
being used, while if it is shorter, not only are some of the
data redundant, but also, because of the fluctuations in
the output, the uncertainties are greater than necessary.
Thus the matching of the detector to the amplifier im-
plies two things, first that the ratios of the uncertainties
are made equal and second that the time interval over
which the number of output photons and the phase are
detected is one half of the reciprocal bandwidth.

Let us now multiply (11) together, introduce the con-
ditions of (12) and (13), and demand that the uncer-
tainty in the measurements referred to the input be the
minimum allowed by the uncertainty principle, that is

The resulting equation is
G?—-1
= An,’A¢,* + Ang,Ad,. (15)
If we put this equation in the form
Agq\* Ada Gt -1
(¢)Ana4+( )An,ﬁ—( >=0 (16)
An, An, 4
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we can solve for An,? in terms of the ratio (An./A¢,) to The result is

give

amt = 222, an
2 Ade

Little more can be done unless we specify the nature
of the amplifier uncertainty. Let us characterize the un-
certainty as additive white noise. The statistical prop-
erties of a signal contaminated by white Gaussian noise
have been extensively studied.!® One result is that the
probability density function for the output phase ap-
proaches a Gaussian distribution for large SNR’s and
has a variance given by

AP

P (18)

Ag,? =

Here AP is the noise power and P is the signal power.
For large SNR'’s the variance in the power distribution
is given by

AP? = 2PAP (19)
so that (18) becomes
Ads? = A (20)
‘o o4p

Since the integration time of the amplifier is 7=1B,

(20) can be put in terms of the variance of the number -

of photons An,? detected during this interval

An, 2Pr
A, hy

This result inserted in (17) together with the relation

AP 2PAPr?
()2 ()

Ang? = (22)

gives for the minimum noise power introduced in the
output of the amplifier

AP = (G — 1)wB. (23)
The effective noise temperature T, is obtained by di-
viding by the amplifier gain to refer the noise power to
the input and then determining what temperature is re-
quired for a black body to radiate the same power. That
is, we must find the value T, for which

hvB 1
—_— = (1 - h) hvB.
M IkTn — 1 G

10S. 0. Rice, “Mathematical analysis of random noise,” Bell Sys.
Tech. J., vol. 23, pp. 282-332, January, 1944; vol. 24, pp. 46-156,
January, 1945; “Statistical properties of a sine-wave plus random
noise,” Bell Sys. Teck. J., vol. 27, pp. 109-157, January, 1948.

(24)
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T, = [ln ——] - (8)
1-1/G k

According to (19) and (23), the minimum mean square
phase fluctuations are

_(G—1)wB

Ag.’
2P

)

These last two equations give relations for the best
possible noise performance of any linear amplifier whose
uncertainty is characterized by white Gaussian noise.
It is interesting to note that in the limit of high gain,
the minimum noise temperature becomes

) (25)

which is precisely the value obtained for the minimum
noise temperature of the maser and the parametric ampli-
fier derived from detailed consideration of the amplifi-
cation mechanisms in the two cases. Thus we can say
that both the maser and the parametric amplifier repre-
sent ideal amplifiers in so far as their ultimate noise per-
formance is concerned.

We should also remark in passing, (8) and (9) indi-
cate that the parametric up-converter which has power
gain by virtue of the change in frequency but has unity
photon gain (G=1), possesses a limiting noise tempera-
ture and phase uncertainty of zero. This result is in
agreement with the detailed calculations of Louisell,
Yariv and Siegman.* This sort of amplifier which does
not multiply the number of photons, however, does not
improve the capability of detecting a signal. The ac-
curacy of the detection process at the output of the up-
converter is no better than if it were performed at the
input. The change in photon frequency and hence en-
ergy is immaterial since the limiting detector uncer-
tainty is dependent solely on the number of photons ar-
riving, not upon their energy.

THE IMPLICATIONS OF THE MINIMUM NoIsg LiMit

At conventional communications frequencies, the
minimum noise temperature given by (8) is entirely
negligible. At optical frequencies though, it can amount
to several tens of thousands of degrees. Such a number
is misleading, however, for it implies that the insertion
of even the best amplifier has seriously degraded our
ability to detect a signal. We can show that such is not
the case by recasting the results of the previous section
in slightly different form. Eqgs. (22) and (23) can be
combined to give the uncertainty produced by the
amplifier in the number of photons as

Anﬁ = (G - l)n(ly (26)



1608

and (9) can be rewritten in the form

_ G-

4n, 27)

A¢,?

to give the uncertainty in phase produced by the ampli-
fier. If we refer these quantities to the input we have

1
Ang? = —6—2 An?2 = (1 — 1/G)my (28)
and
1-1/G
A¢a2 = (__..___/_.)‘ . (29)
41’11

From (26) and (27) we see that if the amplifier gain is
high, the output uncertainties introduced by the ampli-
fier are considerably larger than those of even a poor
matched detector. In this case, the total uncertainty
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Any in the inferred measurement of the input photon
number and A¢, in the inferred measurement of input
phase are closely given by (28) and (29), which relate
to the amplifier alone. In the limit of high gain, the
product of these uncertainties is

An1A¢1 ~ AnaiAd:., x~ % (30)

This is, of course, the minimum value allowed by the
uncertainty principle. Thus the minimum noise ampli-
fier allows us to use a poor detector, one which intro-
duces uncertainties considerably larger than the mini-
mum necessary, and still measure an incoming signal
with an accuracy approaching the best allowed by the
uncertainty principle. There still remains a question of
what limitation is put on the rate of information trans-
mission by this maximum allowable accuracy of detec-
tion. The answer to this question, however, must await
the development of a quantum theory of communica-
tion.

Negative L and C in Solid-State Masers*
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Summary—The analysis of solid-state cavity masers is extended
to include the reactive component of the paramagnetic resonance.
This reactance is inverted (in opposition to Foster’s reactance
theorem). A two-cavity network makes use of this negative fre-
quency dependence of reactance to obtain a broad-band flat-topped
amplifier response. In verification of this theory a ruby maser has
been built which has a 95-Mc bandwidth at 14-db gain and operates
at 9000 Mc and 1.5°K. This performance is comparable to that of pub-
lished, tapered magnetic field traveling-wave masers. General net-
work limitations on cavity maser amplifiers are derived. Broad-
banding techniques that have been published for parametric ampli-
fiers are essentially equivalent. The tuning of the broad-band ampli-
fier is critical. The same performance can be achieved in a unilateral
transmission maser by using circularly polarized cavities, but the
problem of circuit design and tuning with the increased number of
parameters has thus far prevented successful operation.
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I. INTRODUCTION

HE STIMULATED emission behavior of the ac-

tive material in a solid-state maser can be char-

acterized satisfactorily by its contribution to
the complex electric or magnetic susceptibility of the
material. (Beam masers are somewhat more complicated
in this respect.) Typically this susceptibility shows
a sharp resonance at a frequency corresponding to
the quantum transition involved. The imaginary com-
ponent of the susceptibility is, of course, responsible
for the maser gain, but the real, or reactive, component
must also be present. In narrow-band systems this re-
actance may be masked by the larger reactive effects of
the microwave cavity or circuits. As larger gains and
bandwidths are obtained with better substances and de-
sign configurations, the reactive component must be
taken into consideration to obtain a correct analysis of
the circuit behavior. When the population distribu-
tion between the quantum levels is inverted to achieve
maser amplification, both components of the suscepti-
bility reverse sign. The resulting frequency dependence
of reactance corresponds to the situation that would
obtain in conventional circuit analysis if the symbols



